ON THE ACCURACY OF A NONLINEAR
 CLOSED SERVOMECHANISM

PMM Vol. 36, N22, 1972, pp، 361-364

> P. I. ZINIUKOV
> (Moscow)
(Received May 26, 1971)
We investigate the question of the accuracy of a closed servomechanism with a plant described by a linear second-order differential equation and a preselected control law with a "saturation"-type nonlinearity. We derive an algorithm for determining the exact value of the maximal cumulative error on an infinite time interval.

1. We consider a controlled system whose output $y(t)$ has to reproduce hitherto unknown input signals $x(t)$ from a class X of functions with bounded variation rate $\left|x^{\prime}(t)\right| \leqslant$ $\leqslant m_{0}, x(0)=0$. The pehavior of the controlled plant under the action of the control signal v is described by the equation

$$
\begin{equation*}
T y+y^{\circ}=\iota, \quad y(0)=y^{\circ}(0)=0 \tag{1.1}
\end{equation*}
$$

As the control law we take the hard feedback

$$
\begin{gather*}
v(\varepsilon)=k \varepsilon \quad\left(|k \varepsilon| \leqslant u_{0}\right), \quad v(\varepsilon)=u_{0} \operatorname{sign} \varepsilon \quad\left(|k \varepsilon|>u_{0}\right) \tag{1.2}\\
\varepsilon(t)=x(t)-y(t) \quad(k>0)
\end{gather*}
$$

where u_{0} is the constraint on the control signal. Subsequently we assume that $m_{0}<u_{0}$. The system's block diagram is shown in Fig. 1.

Fige 1.
An upper bound for the quantity $\varepsilon_{c c}$, where

$$
\begin{equation*}
\varepsilon_{\infty}=\lim _{t \rightarrow \infty}\left\{\max _{x \in X} \max _{\tau \in[0, t]}|\varepsilon(\tau)|\right\} \tag{1.3}
\end{equation*}
$$

was derived in [1] for the control law (1.2) and for a controlled plant described by an n th-order equation with time lag. Below, for a plant described by a second-order equation we derive an algorithm for finding the exact value of the quantity ε_{∞}, where we make use of another definition (which follows from stationarity), equivalent to (1.3),

$$
\varepsilon_{\infty}=\max _{x \in X}\left\{\max _{t \in[0, \infty]}|\varepsilon(t)|\right\}
$$

2. We denote $y^{*}=z, x^{*}=u$. We call u the control, and then the control u by which ε_{x} is realized is the optimal control. We write the equations of the closed system as

$$
\varepsilon=-z+u, \quad z=-\frac{1}{T} z+\frac{1}{I^{\prime}} v(\varepsilon) . \quad|u|<m, \quad \varepsilon(1)=z(11)=1 \quad(2,1)
$$

and we consider them on a phase plane (Fig. 2).
Theorem. The control u^{*} which takes the value $-m_{0}$ in the region $z>k \varepsilon$ and the value $+m_{0}$ in the region $z<k \varepsilon$ is optimal (the control ' ${ }^{*}$ is not defined on the line $z=k \varepsilon$ itself).

Proof. Let u° be an arbitrary control satisfying $\left|u^{0}\right| \leqslant m_{0}$. At the origin we set u^{*} equal to $m_{0} \operatorname{sign} u^{\circ}\left(t_{1}\right)$, where t_{1} is the first instant at which $u^{\circ} \neq 0$; then for either of the controls u^{*} and u° the representative point,

Fig. 2. starting at the origin, finds itself in one and the same region (either $z<k \varepsilon$ or $z>k \varepsilon$), intersects the line $z=k \varepsilon$, continues the motion in the other region, etc. We denote by $A_{i}{ }^{*}$ and $A_{i}{ }^{\circ}$, respectively, the points of the i th intersection of the corresponding phase trajectories with the line $z=k \varepsilon$ and their coordinates by $z_{i}{ }^{*}$ and $z_{i}{ }^{\circ}$ (the points $A_{0}{ }^{*}$ and $A_{0}{ }^{\text {c }}$ coincide with the origin). We assert that the inequalities $\left|z_{i}^{0}\right| \leqslant\left|z_{i}^{*}\right| \leqslant u_{0}$ are valid for all points $A_{i}{ }^{*}$ and $A_{i}{ }^{\circ}$. We prove this by induction,

The inequalities are valid for $i=0\left(z_{0^{*}}=z_{0}{ }^{\circ}=\right.$ $=0$). Let us assume that the inequalities are valid for $i=n$

$$
\begin{equation*}
\left|z_{n}{ }^{\circ}\right| \leqslant\left|z_{n}^{*}\right| \leqslant u_{0} \tag{2.2}
\end{equation*}
$$

and prove them for $i=n+1$. Consider the phase trajectory portions $A_{n}^{*} A_{n+1}^{*}$ and $A_{n}{ }^{\text {a }}$ A_{n+1}° (Fig. 2). For the sake of definiteness we assume that they lie in the region $z>k \varepsilon$. Each of these portions can either intersect the line $\varepsilon=-u_{0} / k$ or not intersect it. Thus, four combinations of these two cases are possible. Let us consider only one of them, namely: both portions intersect the line $\varepsilon=-u_{0} / k$ (the proof is analogous for the other combinations). We denote by B^{*}, C^{*} the points of the first and last intersections of the line $\varepsilon=-u_{0} k$ with $A_{n}^{*} A_{n+1}^{*}$, and by B°, C° with $A_{n}{ }^{\circ} A_{n+1}^{\circ}$. The points $B^{*}, C^{*}, B^{\circ}, C^{*}$ divide the corresponding phase trajectory portions into three segments. Consider the first segments: $A_{n}{ }^{*} B^{*}$ and $A_{n}{ }^{\circ} B^{\circ}$. We denote by B^{\prime} the point of first intersection of the line $\varepsilon=-u_{0} / k$ with the phase trajectory starting from $A_{n}{ }^{3}$ with $u=-m_{0}$. Since $z>k \varepsilon$, from (2.1) follows

$$
d \boldsymbol{\varepsilon}:\left.d z\right|_{u=-m_{0}} \geqslant d \varepsilon /\left.d z\right|_{u=u^{\circ}}
$$

Hence $z_{B^{\prime}} \geqslant z_{B^{\circ}}$ (where $z_{B^{\prime}}, z_{B^{\circ}}$ are the ordinates of points B^{\prime}, B°). Taking into account that $A_{n}{ }^{*} B^{*}$ and $A_{n}{ }^{\circ} B^{\prime}$ cannot intersect (except in the case of identical coincidence) we obtain $z_{B^{*}} \geqslant z_{R^{\prime}}$ and, hence $z_{B^{*}} \geqslant z_{B^{*}}$. Furthermore, from Eqs. (2.1) and inequalities (2.2) follow $-m_{0} \leqslant z_{B^{*}} \approx u_{0},-m_{0} \approx z_{B^{\circ}} \leqslant u_{0}$. We now consider the next segments: $B^{*} C^{*}$ and $B^{\circ} C^{\circ}$. Proceeding from the inequalities just obtained and reasoning analogously, we can show that $z_{C *} \leqslant z_{1},-u_{0} \leqslant z_{i} *-m_{0},-u_{0} \leqslant z_{C}=m_{0}$. In exactly the same way we can show that

$$
\begin{equation*}
\left|z_{n+1}^{\circ}\right|-\left|z_{n-1}^{*}\right|<n_{n} \tag{2.3}
\end{equation*}
$$

for the last segments $C^{*} A_{n+1}^{*}$ and $C A_{h+1}^{\circ}$ The assertion is proved.

We denote by $\varepsilon_{i}{ }^{*}$ and $\varepsilon_{i}{ }^{\circ}$ the maximum of $|\varepsilon|$ as we move from the points $A_{i}{ }^{*}$ and $A_{i}{ }^{\circ}$ upto the first intersection with the line $z=k \varepsilon$ under controls u^{*} and u° : respectively. Above we derived (2.3) from (2.2). By the same arguments, from (2.2) we can derive the inequality

$$
\begin{equation*}
\varepsilon_{n}^{0} \leqslant \varepsilon_{n}^{*} \tag{2.í}
\end{equation*}
$$

Thus we have two sequences: $\left\{\varepsilon_{n}{ }^{\circ}\right\}$ and $\left\{\varepsilon_{n}{ }^{*}\right\}$, and from the way they were constructed there follows ($t \in[0, \infty]$):

$$
\begin{equation*}
\sup _{n} \varepsilon_{n}^{\circ}=\max |\varepsilon(t)| \quad\left(u=u^{\circ}\right), \quad \sup _{n} \varepsilon_{n}^{*}=\max |\varepsilon(t)| \quad\left(u=u^{*}\right) \tag{2.5}
\end{equation*}
$$

From (2.4) ensues sup $\varepsilon_{n} \varepsilon_{n} \leqslant \sup _{n} \varepsilon_{n}{ }^{*}$. Because u° is arbitrary, the theorem's validity follows from this and from (2.5).
3. For $u=u^{*}$ a limit cycle is possible in the system described by Eqs. (2.1) and, moreover, the absolute value of the maximal deviation along the coordinate ε in this limit cycle it is the desired quantity ε_{∞}. For finding the limit cycle we can make use of the method of point transformations [2], where as

Fig. 3. a consequence of the symmetry about the origin it is sufficient to examine only one-half of this cycle: to be specific let us examine the left half. We denote the points of successive intersections of a certain portion of the phase trajectory for $u=u^{*}$ with the lines $z=k \varepsilon$ and $\varepsilon=-u_{0} / k$ by $B_{1}, B_{2}, B_{3}, B_{4}$ (Fig. 3) and their ordinates by $S_{1}, S_{2}, S_{3}, S_{4}$. According to [2] the sequence of steps to be taken to determine the limit cycle are as follows:

1. Find the functions $S_{1}\left(\tau_{1}\right), S_{2}\left(\tau_{1}\right), S_{2}\left(\tau_{2}\right), S_{3}$ (τ_{2}), $S_{3}\left(\tau_{3}\right), S_{4}\left(\tau_{3}\right)$, where τ_{1} is the time taken to move from B_{1} to B_{2}, τ_{2} from B_{2} to B_{3}, τ_{s} from B_{3} to B_{4}. It is not difficult to obtain these functions because Eq. (2.1) is linear on the corresponding segments. We present only the final results:

$$
\begin{align*}
& S_{1}\left(\tau_{1}\right)=-m_{0}-\frac{u_{1}-m_{3}}{\operatorname{hg}_{1}\left(\tau_{1}\right)} e^{\left(\mu-\xi_{1}\right.}, \quad g_{1}\left(\tau_{1}\right)=\frac{1}{k} \cos v \tau_{1}+\frac{\mu / k-1}{\nu} \sin v \tau_{1} \tag{3.1}\\
& S_{3}\left(\tau_{1}\right)=-m_{1}-\frac{u_{3}-m_{3}}{k_{1}\left(\tau_{1}\right)}\left[\cos v \tau_{1}+\frac{\left(\mu^{2}+v^{2}\right) / k-\mu}{v} \sin v \tau_{1}\right] \\
& S_{2}\left(\boldsymbol{\tau}_{2}\right)=\left(u_{1}-m_{0}\right) \tau_{2}\left[T \left(1-e^{-\tau_{2}} \mathbf{T}_{)}-1-u_{0}, \quad S_{3}\left(\tau_{2}\right)=\left(u_{1}-m_{2}\right) \tau_{2}\left[T\left(e^{\tau_{2} / T}-1\right)\right]^{-1}-u_{0}\right.\right. \tag{3.2}\\
& S_{3}\left(\tau_{3}\right)=-m_{1}+\frac{u_{2}-m_{i}}{\lg _{2}\left(\tau_{3}\right)} \cdot\left[-\cos v \tau_{3}+\frac{\mu^{2}+v^{3}-\mu}{k v} \sin v \tau_{3}\right] \\
& S_{4}\left(\tau_{3}\right)=-m_{9}+\frac{u_{9}-m_{3}}{g_{2}\left(\tau_{3}\right)} e^{-\mu \tau_{3}}\left[-\frac{1}{h} \cos ^{2} v \tau_{3}+\frac{1}{v^{2}}\left(\frac{\mu^{2}-v^{2}}{k}+\mu\right) \sin ^{2} v \tau_{3}\right] \tag{3.3}\\
& g_{2}\left(\tau_{3}\right)=\frac{\cos v \tau_{3}}{k}+\frac{1}{v}\left(1-\frac{\mu}{k}\right) \sin v \tau_{3}
\end{align*}
$$

where $-\mu \pm i v$ are the complex conjugate roots of the equation $T \lambda^{2}+\lambda+k=0$. The case of real roots is analyzed below.
2. Taking τ_{1}, τ_{2} as parameters, from (3.1), (3.2) construct the graphs $S_{1}=S_{1}\left(S_{2}\right)$, $S_{3}=S_{3}\left(S_{2}\right)$ and on their basis, taking S_{2} as a parameter, construct the graph $-S_{1}=$ $=-s_{1}\left(S_{3}\right)$.
3. Taking τ_{3} as a parameter, from (3.3) construct the graph $S_{4}=S_{4}\left(S_{3}\right)$ and find the point of intersection of this graph with the graph $-S_{1}=-S_{1}\left(S_{3}\right)$. The ordinate of this point of intersection yields the desired parameter of the limit cycle: $S_{1}{ }^{*}$. Using this determine the parameter S_{2}^{*} from the graph $S_{1}=S_{1}\left(S_{2}\right)$. Further, we can express ε_{x} in terms of S_{2}^{*}

$$
\begin{equation*}
\varepsilon_{\infty}=\frac{u_{0}}{k}+T\left(m_{2}+S_{2}^{*}\right)-T\left(u_{1}-m_{1}\right) \ln \frac{S_{2}{ }^{*}+u_{0}}{u_{1}-m_{9}} \tag{3.4}
\end{equation*}
$$

We note that the estimate of the quantity ε_{∞} presented in [1] for a plant described by Eq. (1.2) would have the form

$$
\varepsilon_{\infty} \leqslant \frac{u_{0}}{k}+T\left(m_{0}+u_{0}\right)-T\left(u_{9}-m_{0}\right) \ln \frac{2 u_{0}}{u_{0}-m_{0}}
$$

It differs from (3.4) in that $S_{2}{ }^{*}$, the ordinate of the point of intersection of the limit

We present the results of a numerical calculation. For $m_{0}=1, u_{0}=2, T=3$ and as k takes the successive values $1,2,3,4, \infty$, the exact values of the maximal cumulative error ε_{∞} are: $5.30,4.85,4.71,4.65,4.54$, while the estimates presented in [1] yield, respectively: $6,84,5,84,5,50,5,34,4.84$. Calculation results for other values of the parameters give values of ε_{∞} lying between the limits from 50 to 95% of the estimates presented in [1].
4. Let us consider a system in which the control law is linear: $v(\varepsilon)=k \varepsilon$. For such a system it has been shown [3] that

$$
\begin{gather*}
\varepsilon_{\infty}=\frac{m,}{h} \tag{4.1}\\
\varepsilon_{\infty}=\zeta\left(m_{7}, k, T\right), \quad \zeta=\frac{\left.m, \frac{1}{4 L^{\prime}}\right)}{h}+2 \sqrt{\frac{L^{\prime}}{h}} m, \exp \left(-\frac{\pi-\psi}{2 T v}\right)\left[1-\exp \left(-\frac{\pi}{2 T v}\right)\right]^{-1} \\
\psi=\operatorname{arctg}(2 T v) \quad\left(k \geqslant \frac{1}{4 \Gamma^{\prime}}\right)
\end{gather*}
$$

We analyze the case $k<1 /\left(4^{\prime}\right)$. Here $|k \varepsilon| \leqslant m_{0}<u_{0}$, i. e_{0}, the addition of the nonlinear constraint (1.2) does not affect the system's operation. Hence $\varepsilon_{\infty}=m_{0} / k$ in (4.1) is valid for the original nonlinear system described by (1.1)(1.2) when $k<1 /(4 T)$.

We analyze the case $k \geqslant 1 /(4 \mathrm{~T})$. Here for $\zeta \leqslant u_{0} / k$ as before, $|k \varepsilon| \leqslant u_{0}$, and the ε_{∞} of the original nonlinear system can be computed from formula (4.1) for the linear system, whence we see that ε_{∞} decreases monotonically as k grows. For $\zeta>u_{0} / k$ the system goes onto the saturation segment of characteristics (1.2), and the ε_{∞} can be computed by means of the algorithm indicated above. Examples computed for different values of k permit us to expect here that ε_{∞} decreases monotonically as k grows, although we have not succeeded in proving this.

BIBLIOGRAPHY

1. Gnoenskii, L. S., The accuracy of certain nonlinear control systems with restrictions and lag. PMM Vol. 34, N², 1970.
2. Andronov,A.A., Vitt A.A. and Khaikin S.E., Theory of Oscillations. Moscow, Fizmatgiz, 1959.
3. Gnoenskii, L.S., Kamenskii G. A. and El'sgol'ts L. E., Mathematical Foundations of the Theory of Controlled Systems. Moscow, "Nauka", 1969.

Translated by N.H.C.

