.

ON THE ACCURACY OF A NONLINEAR

CLOSED SERVOMECHANISM

PMM Vol. 36, №2, 1972, pp. 361-364 P. I. ZINIUKOV (Moscow) (Received May 26, 1971)

We investigate the question of the accuracy of a closed servomechanism with a plant described by a linear second-order differential equation and a preselected control law with a "saturation"-type nonlinearity. We derive an algorithm for determining the exact value of the maximal cumulative error on an infinite time interval.

1. We consider a controlled system whose output y(t) has to reproduce hitherto unknown input signals x(t) from a class X of functions with bounded variation rate $|x(t)| \le m_0$, x(0) = 0. The behavior of the controlled plant under the action of the control signal v is described by the equation

$$Ty + y' = v, \qquad y(0) = y'(0) = 0$$
 (1.1)

As the control law we take the hard feedback

$$v(\varepsilon) = k\varepsilon \quad (|k\varepsilon| \le u_0), \qquad v(\varepsilon) = u_0 \operatorname{sign} \varepsilon \quad (|k\varepsilon| > u_0) \tag{1.2}$$
$$\varepsilon(t) = x(t) - y(t) \quad (k > 0)$$

where u_0 is the constraint on the control signal. Subsequently we assume that $m_0 < u_0$. The system's block diagram is shown in Fig. 1.

Fig. 1.

An upper bound for the quantity ε_{∞} , where

$$\varepsilon_{\infty} = \lim_{t \to \infty} \{ \max_{x \in \mathcal{X}} \max_{\tau \in [0, t]} | \varepsilon(\tau) | \}$$
(1.3)

was derived in [1] for the control law (1.2) and for a controlled plant described by an n th-order equation with time lag. Below, for a plant described by a second-order equation we derive an algorithm for finding the exact value of the quantity e_{∞} , where we make use of another definition (which follows from stationarity), equivalent to (1.3),

$$\varepsilon_{\infty} = \max_{x \in X} \{ \max_{t \in [0, \infty]} | \varepsilon(t) | \}$$

2. We denote y' = z, x' = u. We call u the control, and then the control u by which ε_{x} is realized is the optimal control. We write the equations of the closed system as

$$\varepsilon = -z + u, \quad z = -\frac{1}{T} z + \frac{1}{T} v(\varepsilon), \quad |u| \leq m_0, \quad \varepsilon(0) = \varepsilon(0) = 0$$
 (2.1)

and we consider them on a phase plane (Fig. 2).

Theorem. The control u^* which takes the value $-m_0$ in the region $z > k\varepsilon$ and the value $+m_0$ in the region $z < k\varepsilon$ is optimal (the control "" is not defined on the line $z = k\varepsilon$ itself).

Proof. Let u° be an arbitrary control satisfying $|u^{\circ}| \leq m_{0}$. At the origin we set u^* equal to $m_0 \operatorname{sign} u^\circ(t_1)$, where t_1 is the first instant at which $u^\circ \neq 0$; then for either

Fig. 2.

of the controls u^* and u° the representative point, starting at the origin, finds itself in one and the same region (either $z < k\varepsilon$ or $z > k\varepsilon$), intersects the line $z = k\varepsilon$, continues the motion in the other region, etc. We denote by A_i^* and A_i° , respectively, the points of the *i*th intersection of the corresponding phase trajectories with the line $z = k\varepsilon$ and their coordinates by z_i^* and z_i° (the points A_0^* and A_0^{c} coincide with the origin). We assert that the inequalities $|z_i^{\circ}| \leq |z_i^{*}| \leq u_0$ are valid for all points A_i^* and A_i° . We prove this by induction.

The inequalities are valid for i = 0 ($z_0^* = z_0^\circ =$ = 0). Let us assume that the inequalities are valid for i = n

$$|z_n^{\circ}| \leq |z_n^*| \leq u_0 \tag{2.2}$$

and prove them for i = n + 1. Consider the phase trajectory portions $A_n^* A_{n+1}^*$ and A_n° A_{n+1}° (Fig. 2). For the sake of definiteness we assume that they lie in the region $z > k\varepsilon$. Each of these portions can either intersect the line $\varepsilon = -u_0/k$ or not intersect it. Thus, four combinations of these two cases are possible. Let us consider only one of them, namely: both portions intersect the line $\varepsilon = -u_0/k$ (the proof is analogous for the other combinations). We denote by B^* , C^* the points of the first and last intersections of the line $\varepsilon = -u_0 / k$ with $A_n * A_{n+1}^*$, and by B°, C° with $A_n * A_{n+1}^\circ$. The points $B^*, C^*, B^\circ, C^\circ$ divide the corresponding phase trajectory portions into three segments. Consider the first segments: $A_n^*B^*$ and $A_n^{\circ}B^{\circ}$. We denote by B' the point of first intersection of the line $\varepsilon = -u_0/k$ with the phase trajectory starting from A_n° with $u = -m_0$. Since $z > k\varepsilon$, from (2, 1) follows

$$d\boldsymbol{\varepsilon} / dz |_{\boldsymbol{u} = -m_0} \ge d\boldsymbol{\varepsilon} / dz |_{\boldsymbol{u} = \boldsymbol{u}^\circ}$$

Hence $z_{B'} \ge z_{B^{\circ}}$ (where $s_{B'}$, $z_{B^{\circ}}$ are the ordinates of points B', B°). Taking into account that $A_n^*B^*$ and $A_n^\circ B'$ cannot intersect (except in the case of identical coincidence) we obtain $z_{B^*} \geqslant z_{B'}$ and, hence $z_{B^*} \geqslant z_{B^\circ}$. Furthermore, from Eqs. (2.1) and inequalities (2.2) follow $-m_0 \leqslant z_{B^*} \leqslant u_0, -m_0 \leqslant z_{B^\circ} \leqslant u_0$. We now consider the next segments: B * C * and $B^{\circ} C^{\circ}$. Proceeding from the inequalities just obtained and reasoning analogously, we can show that $z_{C*} \leqslant z_C$, $-u_0 \leqslant z_{C*} \leqslant -m_0$, $-u_0 \leqslant z_{C^*} \leqslant m_0$. In exactly the same way we can show that

$$|z_{n+1}^{*}| \leq |z_{n+1}^{*}| \leq u_{0}$$
(2.3)

for the last segments $C^*A_{n+1}^*$ and $C^*A_{n+1}^\circ$. The assertion is proved.

We denote by ε_i^* and ε_i° the maximum of $|\varepsilon|$ as we move from the points A_i^* and A_i° up to the first intersection with the line $z = k\varepsilon$ under controls u^* and u° respectively. Above we derived (2,3) from (2,2). By the same arguments, from (2,2) we can derive the inequality 4)

$$\epsilon_n^{\,\,c}\leqslant\epsilon_n^{\,\,*}$$
 (2.

Thus we have two sequences: $\{e_n^{\circ}\}\$ and $\{e_n^{*}\}\$, and from the way they were constructed there follows $(t \in [0, \infty])$:

$$\sup_{n} \varepsilon_{n}^{\circ} = \max |\varepsilon(t)| \qquad (u = u^{\circ}), \qquad \sup_{n} \varepsilon_{n}^{*} = \max |\varepsilon(t)| \qquad (u = u^{*}) \qquad (2.5)$$

From (2.4) ensues $\sup_n e_n^{\circ} \leq \sup_n e_n^{\circ}$. Because u° is arbitrary, the theorem's validity follows from this and from (2.5).

3. For $u = u^*$ a limit cycle is possible in the system described by Eqs. (2.1) and, moreover, the absolute value of the maximal deviation along the coordinate ε in this limit cycle it is the desired quantity ϵ_{∞} . For finding the limit cycle we can make use of

the method of point transformations [2], where as a consequence of the symmetry about the origin it is sufficient to examine only one-half of this cycle: to be specific let us examine the left half. We denote the points of successive intersections of a certain portion of the phase trajectory for $u = u^*$ with the lines $z = k\epsilon$ and $\epsilon = -u_0 / k$ by B_1, B_2, B_3, B_4 (Fig. 3) and their ordinates by S_1 , S_2 , S_3 , S_4 . According to [2] the sequence of steps to be taken to determine the limit cycle are as follows:

1. Find the functions $S_1(\tau_1)$, $S_2(\tau_1)$, $S_2(\tau_2)$, S_3 (τ_2) , $S_3(\tau_3)$, $S_4(\tau_3)$, where τ_1 is the time taken to move from B_1 to B_2 , τ_2 from B_2 to B_3 , τ_3 from B_3 to B_4 . It is not difficult to obtain these functions because Eq. (2.1) is linear on the corresponding

segments. We present only the final results:

$$S_{1}(\tau_{1}) = -m_{0} - \frac{u_{2} - m_{3}}{kg_{1}(\tau_{1})} e^{\mu\tau_{1}}, \qquad g_{1}(\tau_{1}) = \frac{1}{k} \cos \nu\tau_{1} + \frac{\mu/k - 1}{\nu} \sin \nu\tau_{1} \qquad (3.1)$$

$$S_{2}(\tau_{1}) = -m_{1} - \frac{u_{0} - m_{3}}{kg_{1}(\tau_{1})} \left[\cos \nu\tau_{1} + \frac{(\mu^{2} + \nu^{2})^{1/k} - \mu}{\nu} \sin \nu\tau_{1} \right]$$

$$S_{2}(\tau_{2}) = (u_{2} - m_{0})\tau_{2} \left[T(1 - e^{-\tau_{2}})^{T} \right]^{-1} - u_{0}, \qquad S_{3}(\tau_{2}) = (u_{2} - m_{3})\tau_{2} \left[T(e^{\tau_{2}/T} - 1) \right]^{-1} - u_{0} \qquad (3.2)$$

$$S_{3}(\tau_{3}) = -m_{1} + \frac{u_{2} - m_{0}}{kg_{2}(\tau_{3})} \left[-\cos\nu\tau_{3} + \frac{\mu^{2} + \nu^{2} - \mu}{k\nu} \sin\nu\tau_{3} \right]$$

$$S_{4}(\tau_{3}) = -m_{2} + \frac{u_{0} - m_{1}}{g_{2}(\tau_{3})} e^{-\mu\tau_{3}} \left[-\frac{1}{k}\cos^{2}\nu\tau_{3} + \frac{1}{\nu^{2}} \left(\frac{\mu^{2} - \nu^{2}}{k} + \mu \right) \sin^{2}\nu\tau_{3} \right] \quad (3.3)$$

$$g_{2}(\tau_{3}) = \frac{\cos\nu\tau_{3}}{k} + \frac{1}{\nu} \left(1 - \frac{\mu}{k} \right) \sin\nu\tau_{3}$$

where $-\mu \pm i\nu$ are the complex conjugate roots of the equation $T\lambda^2 + \lambda + k = 0$. The case of real roots is analyzed below.

2. Taking τ_1 , τ_2 as parameters, from (3.1), (3.2) construct the graphs $S_1 = S_1 (S_2)$, $S_3 = S_3$ (S₂) and on their basis, taking S_3 as a parameter, construct the graph $-S_1 =$ $= -S_1(S_3).$

3. Taking τ_3 as a parameter, from (3.3) construct the graph $S_4 = S_4$ (S₃) and find the point of intersection of this graph with the graph $-S_1 = -S_1$ (S₃). The ordinate of this point of intersection yields the desired parameter of the limit cycle: S_1^* . Using this determine the parameter S_2^* from the graph $S_1 = S_1$ (S₂). Further, we can express ε_{∞} in terms of S_2^*

$$\boldsymbol{\varepsilon}_{\infty} = \frac{u_0}{k} + T \left(m_0 + S_2^* \right) - T \left(u_0 - m_0 \right) \ln \frac{S_2^* + u_0}{u_0 - m_0} \tag{3.4}$$

We note that the estimate of the quantity ε_{∞} presented in [1] for a plant described by Eq. (1.2) would have the form

$$\varepsilon_{\infty} \leq \frac{u_0}{k} + T (m_0 + u_0) - T (u_0 - m_0) \ln \frac{2u_0}{u_0 - m_0}$$

It differs from (3, 4) in that S_2^* , the ordinate of the point of intersection of the limit cycle with the line $\varepsilon = -u_0 / k_2$ is replaced by its upper bound, the value u_0 .

We present the results of a numerical calculation. For $m_0 = 1$, $u_0 = 2$, T = 3 and as k takes the successive values 1, 2, 3, 4, ∞ , the exact values of the maximal cumulative error e_{∞} are: 5.30, 4.85, 4.71, 4.65, 4.54, while the estimates presented in [1] yield, respectively: 6,84, 5,84, 5,50, 5,34, 4.84. Calculation results for other values of the parameters give values of e_{∞} lying between the limits from 50 to 95% of the estimates presented in [1].

4. Let us consider a system in which the control law is linear: $v(\varepsilon) = k\varepsilon$. For such a system it has been shown [3] that

$$\varepsilon_{\infty} = \frac{m_{\gamma}}{k} - \left(k < \frac{1}{4T}\right)$$

$$\varepsilon_{\infty} = \zeta (m_{\gamma}, k, T), \quad \zeta = \frac{m_{\gamma}}{k} + 2 \sqrt{-\frac{T}{k}} m_{\gamma} \exp\left(-\frac{\pi - \psi}{2T\nu}\right) \left[1 - \exp\left(-\frac{\pi}{2T\nu}\right)\right]^{-1}$$

$$\psi = \operatorname{arctg} (2T\nu) - \left(k \ge \frac{1}{4T}\right)$$
(4.1)

We analyze the case k < 1 / (4T). Here $|k\varepsilon| \le m_0 < u_0$, i.e., the addition of the nonlinear constraint (1.2) does not affect the system's operation. Hence $\varepsilon_{\infty} = m_0 / k$ in (4.1) is valid for the original nonlinear system described by (1.1)(1.2) when k < 1 / (4T).

We analyze the case $k \ge 1/(4T)$. Here for $\zeta \le u_0 / k$ as before, $|k\varepsilon| \le u_0$, and the ε_{∞} of the original nonlinear system can be computed from formula (4.1) for the linear system, whence we see that ε_{∞} decreases monotonically as k grows. For $\zeta > u_0 / k$ the system goes onto the saturation segment of characteristics (1.2), and the ε_{∞} can be computed by means of the algorithm indicated above. Examples computed for different values of k permit us to expect here that ε_{∞} decreases monotonically as k grows, although we have not succeeded in proving this.

BIBLIOGRAPHY

- Gnoenskii, L.S., The accuracy of certain nonlinear control systems with restrictions and lag. PMM Vol. 34, №6, 1970.
- Andronov, A. A., Vitt A. A. and Khaikin S. E., Theory of Oscillations. Moscow, Fizmatgiz, 1959.
- 3. Gnoenskii, L.S., Kamenskii G.A. and El'sgol'ts L.E., Mathematical Foundations of the Theory of Controlled Systems. Moscow, "Nauka", 1969. Translated by N.H.C.